A priori estimate for non-uniform elliptic equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A priori estimate for a family of semi-linear elliptic equations with critical nonlinearity

We consider positive solutions of ∆u − μu + Ku n+2 n−2 = 0 on B1 (n ≥ 5) where μ and K > 0 are smooth functions on B1. If K is very sub-harmonic at each critical point of K in B2/3 and the maximum of u in B̄1/3 is comparable to its maximum over B̄1, then all positive solutions are uniformly bounded on B̄1/3. As an application, a priori estimate for solutions of equations defined on Sn is derived. ...

متن کامل

A Priori Estimates for Elliptic Equations in Weighted Sobolev Spaces

In this paper we prove some a priori bounds for the solutions of the Dirichlet problem for elliptic equations with singular coefficients in weighted Sobolev spaces. Mathematics subject classification (2010): 35J25, 35B45, 35R05.

متن کامل

A Priori Estimates of Positive Solutions for Sublinear Elliptic Equations

In this paper, a priori estimates of positive solutions for sublinear elliptic equations are given in terms of thicknesses of domains. To this end, a supersolution is constructed by a composite function of a solution to an ordinary differential equation and a distance function. The results work efficiently in the case where the domain is an exterior or an interior of a convex set.

متن کامل

Uniform Elliptic Estimate for an Infinite Plate in Linear Elasticity

Abstract We present a new study of linear elasticity for an infinite three-dimensional plate of finite thickness Ω = IR2×(−1, 1). We first caracterize the kernel of the operator of elasticity as polynomials which can be build from the kernel of the classical Kirchhoff-Love model of plate. Using this characterization we get optimal uniform elliptic estimates W , C on the solution as a function o...

متن کامل

A sharp Hölder estimate for elliptic equations in two variables

We prove a sharp Hölder estimate for solutions of linear two-dimensional, divergence form elliptic equations with measurable coefficients, such that the matrix of the coefficients is symmetric and has unit determinant. Our result extends some previous work by Piccinini and Spagnolo [7]. The proof relies on a sharp Wirtinger type inequality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2011

ISSN: 0022-0396

DOI: 10.1016/j.jde.2010.11.006